论文标题
TREC:基于潜在项目趋势信息的顺序推荐剂
TRec: Sequential Recommender Based On Latent Item Trend Information
论文作者
论文摘要
推荐系统在在线Web应用程序中起重要作用。顺序推荐通过从最新的用户互动历史记录中利用信息来实现用户短期偏好。大多数顺序推荐方法忽略了不断变化的项目受欢迎程度的重要性。我们从直觉中提出了模型,即大多数用户互动的项目过去可能很受欢迎,但最近几天可能会过时。为此,本文提出了一种新颖的顺序推荐方法,称为TREC,TREC从隐式用户互动历史记录中学习了项目趋势信息,并将项目趋势信息纳入下一个项目建议任务中。然后,使用一种自我注意的机制来学习更好的节点表示。我们的模型通过基于成对等级的优化训练。我们在四个基准数据集上使用七种基线方法进行了广泛的实验,经验结果表明,我们的方法的表现优于其他状态的方法,同时维持较低的运行时成本。我们的研究证明了项目趋势信息在推荐系统设计中的重要性,我们的方法还具有很高的效率,使其在现实情况下可以实用。
Recommendation system plays an important role in online web applications. Sequential recommender further models user short-term preference through exploiting information from latest user-item interaction history. Most of the sequential recommendation methods neglect the importance of ever-changing item popularity. We propose the model from the intuition that items with most user interactions may be popular in the past but could go out of fashion in recent days. To this end, this paper proposes a novel sequential recommendation approach dubbed TRec, TRec learns item trend information from implicit user interaction history and incorporates item trend information into next item recommendation tasks. Then a self-attention mechanism is used to learn better node representation. Our model is trained via pairwise rank-based optimization. We conduct extensive experiments with seven baseline methods on four benchmark datasets, The empirical result shows our approach outperforms other stateof-the-art methods while maintains a superiorly low runtime cost. Our study demonstrates the importance of item trend information in recommendation system designs, and our method also possesses great efficiency which enables it to be practical in real-world scenarios.