论文标题
一个小学的Abelian $ p $ - 具有许多自动形态的Hermitian曲线
An elementary abelian $p$-cover of the Hermitian curve with many automorphisms
论文作者
论文摘要
确定了特征性的Hermitian曲线的某个基本Abelian $ P $ C $ P> 0 $的完整自动形态组。值得注意的是,自动形态组的Sylow $ p $ - 组的命令接近Nakajima的界限,就$ p $ rank而言。还研究了Weierstrass点,Galois点,Frobenius非经典性和ARC属性。
The full automorphism group of a certain elementary abelian $p$-cover of the Hermitian curve in characteristic $p>0$ is determined. It is remarkable that the order of Sylow $p$-groups of the automorphism group is close to Nakajima's bound in terms of the $p$-rank. Weierstrass points, Galois points, Frobenius nonclassicality, and arc property are also investigated.