论文标题

无监督的分离发现无监督的部分发现

Unsupervised Part Discovery by Unsupervised Disentanglement

论文作者

Braun, Sandro, Esser, Patrick, Ommer, Björn

论文摘要

我们解决了在没有监督的情况下发现铰接对象的部分细分的问题。与关键点相反,部分分段提供了有关单个像素级别的部分定位的信息。捕获位置和语义,它们是监督学习方法的有吸引力的目标。但是,大注释成本将监督算法的可伸缩性限制为其他对象类别的可扩展性。无监督的方法可能会以较低的成本使用更多数据。大多数现有的无监督方法都集中于学习抽象表示,以通过监督到最终表示形式。我们的方法利用了一个生成模型,该模型由两个分离的表示形状和外观以及零件分割的潜在变量组成。从单个图像中,受过训练的模型渗透了语义部分分割图。在实验中,我们将我们的方法比较了以前的最新方法,并观察到分割精度和形状一致性的显着提高。我们的工作证明了在没有监督的情况下发现语义部分细分的可行性。

We address the problem of discovering part segmentations of articulated objects without supervision. In contrast to keypoints, part segmentations provide information about part localizations on the level of individual pixels. Capturing both locations and semantics, they are an attractive target for supervised learning approaches. However, large annotation costs limit the scalability of supervised algorithms to other object categories than humans. Unsupervised approaches potentially allow to use much more data at a lower cost. Most existing unsupervised approaches focus on learning abstract representations to be refined with supervision into the final representation. Our approach leverages a generative model consisting of two disentangled representations for an object's shape and appearance and a latent variable for the part segmentation. From a single image, the trained model infers a semantic part segmentation map. In experiments, we compare our approach to previous state-of-the-art approaches and observe significant gains in segmentation accuracy and shape consistency. Our work demonstrates the feasibility to discover semantic part segmentations without supervision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源