论文标题

神经PDE:基于RNN的神经网络,用于解决时间依赖性PDE

Neural-PDE: A RNN based neural network for solving time dependent PDEs

论文作者

Hu, Yihao, Zhao, Tong, Xu, Shixin, Xu, Zhiliang, Lin, Lizhen

论文摘要

部分微分方程(PDE)在研究科学和工程中的许多问题中起着至关重要的作用。在数值上求解非线性和/或高维PDE通常是一项具有挑战性的任务。受到机器学习的传统有限差异和有限元素方法以及新兴的进步的启发,我们提出了一个名为Neural-PDE的序列深度学习框架,该序列可以自动从现有数据中自动从现有数据中学习的管理规则,并使用双向LSTM编码,并预测下一个n时间步长数据。我们提出的框架的一个关键特征是,神经-PDE能够同时学习和模拟多尺度变量。我们通过一定范围的示例从一维PDE到高维和非线性复合体模型测试神经PDE。结果表明,神经PDE能够在不了解PDE系统的特定形式的情况下学习初始条件,边界条件和差异操作员。在我们的实验中,神经PDE可以在20个时期训练中有效提取动力学,并产生准确的预测。此外,与学习PDE中的传统机器学习方法(例如CNN和MLP)需要大量参数以进行模型精度,而Neural-PDE在所有时间步骤中共享参数,从而大大降低了计算复杂性并导致快速学习算法。

Partial differential equations (PDEs) play a crucial role in studying a vast number of problems in science and engineering. Numerically solving nonlinear and/or high-dimensional PDEs is often a challenging task. Inspired by the traditional finite difference and finite elements methods and emerging advancements in machine learning, we propose a sequence deep learning framework called Neural-PDE, which allows to automatically learn governing rules of any time-dependent PDE system from existing data by using a bidirectional LSTM encoder, and predict the next n time steps data. One critical feature of our proposed framework is that the Neural-PDE is able to simultaneously learn and simulate the multiscale variables.We test the Neural-PDE by a range of examples from one-dimensional PDEs to a high-dimensional and nonlinear complex fluids model. The results show that the Neural-PDE is capable of learning the initial conditions, boundary conditions and differential operators without the knowledge of the specific form of a PDE system.In our experiments the Neural-PDE can efficiently extract the dynamics within 20 epochs training, and produces accurate predictions. Furthermore, unlike the traditional machine learning approaches in learning PDE such as CNN and MLP which require vast parameters for model precision, Neural-PDE shares parameters across all time steps, thus considerably reduces the computational complexity and leads to a fast learning algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源