论文标题
在本地基里加米力学上
On Local Kirigami Mechanics I: Isometric Conical Solutions
论文作者
论文摘要
在过去的十年中,基里加米(Kirigami) - 日本的剪裁艺术 - 在机械超材料的新兴领域和无数其他机械应用中发挥了越来越多的作用。尽管如此,尚未实现对基里加米结构的数学和机制的深刻理解,以解开其全部潜力,以开拓该领域的更先进的应用。在这项工作中,我们研究了基里加米(Kirigami)最基本的几何构建块:一张带有单切的薄纸。我们考虑了带有径向缝隙的圆形薄磁盘的二维板模型,并在开口缝隙和嘴唇旋转后研究其变形。在等距极限(作为磁盘的厚度接近零)中,弹性能没有拉伸的贡献,薄板采用称为E-Cone的圆锥形形状。我们假设圣地纳特 - 基尔奇霍夫本构成板模型解决了几何非线性设置中的E-cone后弯曲后问题;我们发现应力场的封闭形式表达式,并显示了由球形弹性问题控制的E-con的几何形状。这使我们能够充分绘制解决方案的空间,并研究弯曲后的电子锥问题的稳定性,假设镜子对称边界条件在嘴唇上旋转开放缝隙上。
Over the past decade, kirigami--the Japanese art of paper cutting--has been playing an increasing role in the emerging field of mechanical metamaterials and a myriad of other mechanical applications. Nonetheless, a deep understanding of the mathematics and mechanics of kirigami structures is yet to be achieved in order to unlock their full potential to pioneer more advanced applications in the field. In this work, we study the most fundamental geometric building block of kirigami: a thin sheet with a single cut. We consider a reduced two-dimensional plate model of a circular thin disk with a radial slit and investigate its deformation following the opening of the slit and the rotation of its lips. In the isometric limit--as the thickness of the disk approaches zero--the elastic energy has no stretching contribution and the thin sheet takes a conical shape known as the e-cone. We solve the post-buckling problem for the e-cone in the geometrically nonlinear setting assuming a Saint Venant-Kirchhoff constitutive plate model; we find closed-form expressions for the stress fields and show the geometry of the e-cone to be governed by the spherical elastica problem. This allows us to fully map out the space of solutions and investigate the stability of the post-buckled e-cone problem assuming mirror symmetric boundary conditions on the rotation of the lips on the open slit.