论文标题
与深度学习相撞的QCD过渡的性质
Identifying the nature of the QCD transition in heavy-ion collisions with deep learning
论文作者
论文摘要
在此程序中,我们使用深卷积神经网络(CNN)回顾了我们最近的工作,以在重型离子碰撞的混合建模中识别QCD过渡的性质。在此杂种模型中,粘性的流体动力模型与Hadronic Cascade“后燃烧器”结合在一起。作为二进制分类设置,我们在流体动力学进化中采用了两种不同类型的状态方程(EOS)。横向动量和方位角平面中所得的最终液态光谱作为输入数据馈送到神经网络中,以区分不同的EOS。为了探测逐个事件光谱中波动的影响,我们探索了输入数据的不同方案,并以系统的方式进行比较。当网络被逐个事件,喀斯喀特式粒度和事件 - 精细的光谱传递时,我们会观察到预测能力的明确层次结构。经过精心训练的神经网络可以从PION光谱中提取高级特征,以在现实的模拟场景中识别QCD过渡的性质。
In this proceeding, we review our recent work using deep convolutional neural network (CNN) to identify the nature of the QCD transition in a hybrid modeling of heavy-ion collisions. Within this hybrid model, a viscous hydrodynamic model is coupled with a hadronic cascade "after-burner". As a binary classification setup, we employ two different types of equations of state (EoS) of the hot medium in the hydrodynamic evolution. The resulting final-state pion spectra in the transverse momentum and azimuthal angle plane are fed to the neural network as the input data in order to distinguish different EoS. To probe the effects of the fluctuations in the event-by-event spectra, we explore different scenarios for the input data and make a comparison in a systematic way. We observe a clear hierarchy in the predictive power when the network is fed with the event-by-event, cascade-coarse-grained and event-fine-averaged spectra. The carefully-trained neural network can extract high-level features from pion spectra to identify the nature of the QCD transition in a realistic simulation scenario.