论文标题

具有所有$(a,b)$ - 均等因素的图表条件

A Degree Condition for Graphs Having All $(a,b)$-Parity Factors

论文作者

Liu, Haodong, Lu, Hongliang

论文摘要

令$ a $和$ b $为正整数,以便$ a \ leq b $和$ a \ equiv b \ pmod 2 $。我们说$ g $具有所有$(a,b)$ - 平价因素,如果$ g $具有$ h $ factor $ h:v(g)\ rightArrow \ {a,a+2,a+2,\ ldots,b-2,b \} $,带有$ b | v(g)| $ heve and $ h(v)和$ h(v)\ equiv b \ equiv b \ equ b \ p $ v $ v。在本文中,我们证明,$ n \ geq 3(b+1)(a+b)$ vertices具有所有$(a,b)$ - 平等因素,如果$δ(g)\ geq(b^2-b)/a $,对于任何两个非adjacent thjacent $ u,in(b^2-b)/a $ $ \ max \ {d_g(u),d_g(v)\} \ geq \ frac {bn} {a+b} $。此外,我们表明,从某种意义上说,这个结果是最好的。

Let $a$ and $b$ be positive integers such that $a\leq b$ and $a\equiv b\pmod 2$. We say that $G$ has all $(a, b)$-parity factors if $G$ has an $h$-factor for every function $h: V(G) \rightarrow \{a,a+2,\ldots,b-2,b\}$ with $b|V(G)|$ even and $h(v)\equiv b\pmod 2$ for all $v\in V(G)$. In this paper, we prove that every graph $G$ with $n\geq 3(b+1)(a+b)$ vertices has all $(a,b)$-parity factors if $δ(G)\geq (b^2-b)/a$, and for any two nonadjacent vertices $u,v \in V(G)$, $\max\{d_G(u),d_G(v)\}\geq \frac{bn}{a+b}$. Moreover, we show that this result is best possible in some sense.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源