论文标题

混合图A数据结构用于压缩,渲染和查询分割直方图

The Mixture Graph-A Data Structure for Compressing, Rendering, and Querying Segmentation Histograms

论文作者

Al-Thelaya, Khaled, Agus, Marco, Schneider, Jens

论文摘要

在本文中,我们提出了一种新的数据结构,称为混合图。这种数据结构使我们能够压缩,渲染和查询分割直方图。当构建包含分割ID的体积的MIPMAP时,就会出现此类直方图。直方图中的每个体素包含分割ID的凸组合(混合物)。每种混合物代表ID在各自的体素儿童中的分布。我们的方法将这些混合物分配到两个分割ID之间的一系列线性插值中。结果表示为有向的无环图(DAG),其节点是拓扑排序的。修剪在树上复制节点,然后压缩,使我们能够有效地存储所得的数据结构。在渲染过程中,传递函数是从源(LEAF)通过DAG传播的,以便在交互式帧速率下进行有效的,预滤波的渲染。在给定音量的整个足迹上的直方图贡献组装使我们能够有效查询部分直方图,超过Na $ \ Mathrm {„ j} $ ve并行范围查询,达到了178美元$ \ times $加速。此外,我们将混合图应用于正确过滤的体积照明,并使用多维传递函数根据形状,几何和方向进行交互式探索段。

In this paper, we present a novel data structure, called the Mixture Graph. This data structure allows us to compress, render, and query segmentation histograms. Such histograms arise when building a mipmap of a volume containing segmentation IDs. Each voxel in the histogram mipmap contains a convex combination (mixture) of segmentation IDs. Each mixture represents the distribution of IDs in the respective voxel's children. Our method factorizes these mixtures into a series of linear interpolations between exactly two segmentation IDs. The result is represented as a directed acyclic graph (DAG) whose nodes are topologically ordered. Pruning replicate nodes in the tree followed by compression allows us to store the resulting data structure efficiently. During rendering, transfer functions are propagated from sources (leafs) through the DAG to allow for efficient, pre-filtered rendering at interactive frame rates. Assembly of histogram contributions across the footprint of a given volume allows us to efficiently query partial histograms, achieving up to 178$\times$ speed-up over na$\mathrm{ï}$ve parallelized range queries. Additionally, we apply the Mixture Graph to compute correctly pre-filtered volume lighting and to interactively explore segments based on shape, geometry, and orientation using multi-dimensional transfer functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源