论文标题
粒子群优化工业物联网和智能城市服务的联合学习
Particle Swarm Optimized Federated Learning For Industrial IoT and Smart City Services
论文作者
论文摘要
关于联邦学习(FL)的大多数研究都集中在分析全球优化,隐私和沟通,而有限的注意力集中在分析在边缘设备上进行有效的本地培训和推断的关键问题。成功有效培训和对边缘设备推断的主要挑战之一是仔细选择构建本地机器学习(ML)模型的参数。为此,我们提出了一种基于粒子群优化(PSO)的技术,以优化FL环境中本地ML模型的高参数设置。我们使用两个案例研究评估了我们提出的技术的性能。首先,我们考虑智能城市服务,并使用实验运输数据集进行交通预测作为此设置的代理。其次,我们考虑工业物联网(IIOT)服务,并使用实时遥测数据集预测机器由于组件故障而导致故障的可能性。我们的实验表明,与网格搜索方法相比,PSO提供了一种有效的方法来调整深短期记忆(LSTM)模型的高参数(LSTM)模型。我们的实验表明,探索配置景观以找到近乎最佳参数的顾客 - 服务器通信循环的数量大大减少了(大约是两个数量级,仅需要2%的数量级,而与基于ART的非PSO方法相比,其中4%的回合)。我们还证明,利用所提出的基于PSO的技术来找到FL和集中学习模型的近乎最佳的配置并不会对模型的准确性产生不利影响。
Most of the research on Federated Learning (FL) has focused on analyzing global optimization, privacy, and communication, with limited attention focusing on analyzing the critical matter of performing efficient local training and inference at the edge devices. One of the main challenges for successful and efficient training and inference on edge devices is the careful selection of parameters to build local Machine Learning (ML) models. To this aim, we propose a Particle Swarm Optimization (PSO)-based technique to optimize the hyperparameter settings for the local ML models in an FL environment. We evaluate the performance of our proposed technique using two case studies. First, we consider smart city services and use an experimental transportation dataset for traffic prediction as a proxy for this setting. Second, we consider Industrial IoT (IIoT) services and use the real-time telemetry dataset to predict the probability that a machine will fail shortly due to component failures. Our experiments indicate that PSO provides an efficient approach for tuning the hyperparameters of deep Long short-term memory (LSTM) models when compared to the grid search method. Our experiments illustrate that the number of clients-server communication rounds to explore the landscape of configurations to find the near-optimal parameters are greatly reduced (roughly by two orders of magnitude needing only 2%--4% of the rounds compared to state of the art non-PSO-based approaches). We also demonstrate that utilizing the proposed PSO-based technique to find the near-optimal configurations for FL and centralized learning models does not adversely affect the accuracy of the models.