论文标题

同态加密量渲染

Homomorphic-Encrypted Volume Rendering

论文作者

Mazza, Sebastian, Patel, Daniel, Viola, Ivan

论文摘要

计算苛刻的任务通常是在专用数据中心中计算的,并且实时可视化也遵循此趋势。但是,某些渲染任务需要最高的机密性,因此除了所有者以外,没有其他方可以阅读或查看敏感数据。在这里,我们提出了一种直接的体积渲染方法,该方法通过使用同形Paillier加密算法直接在加密的音量数据上执行卷渲染。这种方法确保了卷数据和渲染图像对渲染服务器无法解释。我们的音量渲染管道介绍了用于加密数据合成,插值和不透明度调制的新颖方法,以及简单的传输函数设计,其中这些例程中的每一个都保持了最高的隐私水平。我们提出与保护隐私方案相关的性能和内存架空分析。我们的方法是通过设计开放和安全的,而不是通过晦涩难懂。数据的所有者只需保留其安全的密钥机密,以确保其音量数据和渲染图像的隐私。据我们所知,我们的工作是第一种保存隐私的远程音量渲染方法,不需要任何涉及的服务器值得信赖;即使在服务器遭到损害的情况下,也不会将敏感数据泄露给外国政党。

Computationally demanding tasks are typically calculated in dedicated data centers, and real-time visualizations also follow this trend. Some rendering tasks, however, require the highest level of confidentiality so that no other party, besides the owner, can read or see the sensitive data. Here we present a direct volume rendering approach that performs volume rendering directly on encrypted volume data by using the homomorphic Paillier encryption algorithm. This approach ensures that the volume data and rendered image are uninterpretable to the rendering server. Our volume rendering pipeline introduces novel approaches for encrypted-data compositing, interpolation, and opacity modulation, as well as simple transfer function design, where each of these routines maintains the highest level of privacy. We present performance and memory overhead analysis that is associated with our privacy-preserving scheme. Our approach is open and secure by design, as opposed to secure through obscurity. Owners of the data only have to keep their secure key confidential to guarantee the privacy of their volume data and the rendered images. Our work is, to our knowledge, the first privacy-preserving remote volume-rendering approach that does not require that any server involved be trustworthy; even in cases when the server is compromised, no sensitive data will be leaked to a foreign party.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源