论文标题

RAMSES:一个全堆栈应用程序,用于检测癫痫发作和减少连续脑电图监控期间的数据

RAMSES: A full-stack application for detecting seizures and reducing data during continuous EEG monitoring

论文作者

Bernabei, John M., Owoputi, Olaoluwa, Small, Shyon D., Nyema, Nathaniel T., Dumenyo, Elom, Kim, Joongwon, Baldassano, Steven N., Painter, Christopher, Conrad, Erin C., Ganguly, Taneeta M., Balu, Ramani, Davis, Kathryn A., Pathmanathan, Jay, Litt, Brian

论文摘要

目的:连续的脑电图(CEEG)监测与重症患者的死亡率较低有关,但是由于难以手动解释延长CEEG数据流的困难,因此未充分利用。在这里,我们提出了一种新颖的实时,基于机器学习的警报和监测系统,用于癫痫和癫痫发作(Ramses),可大大减少手动脑电图审查的数量。方法:我们使用随机森林开发了一种自定义数据减少算法,并将其部署在基于云的在线平台中,该平台通过Web界面通过Web界面与护理人员进行交流,以显示算法结果。我们验证了77名接受常规头皮ICU EEG监测患者的CEEG记录的公羊。结果:关于癫痫发作的受试者,我们达到了80%的总体数据降低,同时检测所有验证患者的癫痫发作的平均值为84%,其中19/27例患者获得了100%的癫痫发作检测。关于癫痫发作的自由镜,大多数CEEG记录,我们将需要手动审查的数据降低了> 83%。结论:本研究验证了一个机器学习辅助数据减少的平台。意义:这项工作代表了提高效用和降低CEEG监视成本的有意义的一步,我们还使我们的高质量注释的数据集对77个ICU CEEG录音公开,以便其他人验证和改进我们的方法。

Objective: Continuous EEG (cEEG) monitoring is associated with lower mortality in critically ill patients, however it is underutilized due to the difficulty of manually interpreting prolonged streams of cEEG data. Here we present a novel real-time, machine learning-based alerting and monitoring system for epilepsy and seizures (RAMSES) that dramatically reduces the amount of manual EEG review. Methods: We developed a custom data reduction algorithm using a random forest, and deployed it within an online cloud-based platform which streams data and communicates interactively with caregivers via a web interface to display algorithm results. We validate RAMSES on cEEG recordings from 77 patients undergoing routine scalp ICU EEG monitoring. Results: On subjects with seizures we achieved >80% overall data reduction, while detecting a mean of 84% of seizures across all validation patients, with 19/27 patients achieving 100% seizure detection. On seizure free-patients, the majority of cEEG records, we reduced data requiring manual review by >83%. Conclusion: This study validates a platform for machine-learning assisted data reduction. Significance: This work represents a meaningful step towards improving utility and decreasing cost for cEEG monitoring We also make our high-quality annotated dataset of 77 ICU cEEG recordings public for others to validate and improve upon our methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源