论文标题

乳房密度分类的联合学习:现实世界实施

Federated Learning for Breast Density Classification: A Real-World Implementation

论文作者

Roth, Holger R., Chang, Ken, Singh, Praveer, Neumark, Nir, Li, Wenqi, Gupta, Vikash, Gupta, Sharut, Qu, Liangqiong, Ihsani, Alvin, Bizzo, Bernardo C., Wen, Yuhong, Buch, Varun, Shah, Meesam, Kitamura, Felipe, Mendonça, Matheus, Lavor, Vitor, Harouni, Ahmed, Compas, Colin, Tetreault, Jesse, Dogra, Prerna, Cheng, Yan, Erdal, Selnur, White, Richard, Hashemian, Behrooz, Schultz, Thomas, Zhang, Miao, McCarthy, Adam, Yun, B. Min, Sharaf, Elshaimaa, Hoebel, Katharina V., Patel, Jay B., Chen, Bryan, Ko, Sean, Leibovitz, Evan, Pisano, Etta D., Coombs, Laura, Xu, Daguang, Dreyer, Keith J., Dayan, Ittai, Naidu, Ram C., Flores, Mona, Rubin, Daniel, Kalpathy-Cramer, Jayashree

论文摘要

构建强大的基于深度学习的模型需要大量不同的培训数据。在这项研究中,我们研究了联合学习(FL)在现实世界协作环境中构建医学成像分类模型的使用。来自世界各地的七个临床机构加入了FL的努力,以基于乳房成像,报告和数据系统(BI-RADS)培训乳房密度分类的模型。我们表明,尽管数据集之间的所有站点(乳房X线摄影系统,类别分布和数据集大小)之间存在很大差异,而无需集中数据,我们仍可以在联邦中成功培训AI模型。结果表明,使用FL训练的模型平均比在研究所的本地数据上训练的同行训练了6.3%。此外,在对其他参与站点的测试数据进行评估时,我们在模型的可推广性中显示了45.8%的相对改善。

Building robust deep learning-based models requires large quantities of diverse training data. In this study, we investigate the use of federated learning (FL) to build medical imaging classification models in a real-world collaborative setting. Seven clinical institutions from across the world joined this FL effort to train a model for breast density classification based on Breast Imaging, Reporting & Data System (BI-RADS). We show that despite substantial differences among the datasets from all sites (mammography system, class distribution, and data set size) and without centralizing data, we can successfully train AI models in federation. The results show that models trained using FL perform 6.3% on average better than their counterparts trained on an institute's local data alone. Furthermore, we show a 45.8% relative improvement in the models' generalizability when evaluated on the other participating sites' testing data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源