论文标题
遍布局部星形星系种群的云量表上的分子气体特性
Molecular Gas Properties on Cloud Scales Across the Local Star-forming Galaxy Population
论文作者
论文摘要
使用Phangs-Alma CO(2-1)调查,我们表征了$ {\ sim}上的分子气体性能,$ {\ sim} $ 100 PC尺度在附近的70个独立的星系中的102,778个独立的视线上。这可以在迄今为止获得的局部恒星形成的星系群体上产生分子气体特性的最佳合成视图。与以前的研究一致,我们观察到我们样品中星系中的各种分子气体表面密度(3.4 dex),速度分散体(1.7 dex)以及湍流压力(6.5 dex)。在简化的关于子分辨率气体结构的假设下,推断的病毒参数表明,分子气体的动能通常超过其在$ {\ sim} $ 100 pc量表的自我重新结合能以适中的因子(平均为1.3)。我们发现,云尺度的表面密度,速度分散和湍流压力(1)在星系内部的内部增加,((2)在禁止的星系中心中的高度(2)异常高(其中气体在重力上也较小),并且(3)在螺旋臂中比在螺旋臂中高度高。这些气体特性的星系范围平均也与恒星质量,恒星形成速率以及宿主星系的恒星形成主序列的抵消相关。即使我们排除了银河系中心具有非凡气体特性的区域,这些相关性仍然存在,这对甘马间的变化产生了显着贡献。我们的结果为分子云种群与银河系环境之间的物理联系提供了关键的经验约束。
Using the PHANGS-ALMA CO (2-1) survey, we characterize molecular gas properties on ${\sim}$100 pc scales across 102,778 independent sightlines in 70 nearby galaxies. This yields the best synthetic view of molecular gas properties on cloud scales across the local star-forming galaxy population obtained to date. Consistent with previous studies, we observe a wide range of molecular gas surface densities (3.4 dex), velocity dispersions (1.7 dex), and turbulent pressures (6.5 dex) across the galaxies in our sample. Under simplifying assumptions about sub-resolution gas structure, the inferred virial parameters suggest that the kinetic energy of the molecular gas typically exceeds its self-gravitational binding energy at ${\sim}$100 pc scales by a modest factor (1.3 on average). We find that the cloud-scale surface density, velocity dispersion, and turbulent pressure (1) increase towards the inner parts of galaxies, (2) are exceptionally high in the centers of barred galaxies (where the gas also appears less gravitationally bound), and (3) are moderately higher in spiral arms than in inter-arm regions. The galaxy-wide averages of these gas properties also correlate with the integrated stellar mass, star formation rate, and offset from the star-forming main sequence of the host galaxies. These correlations persist even when we exclude regions with extraordinary gas properties in galaxy centers, which contribute significantly to the inter-galaxy variations. Our results provide key empirical constraints on the physical link between molecular cloud populations and their galactic environment.