论文标题
使用$ k $ - cut cosmic剪切的减少剪切近似下的高 - $ \ ell $ $ trontier
Accessing the high-$\ell$ frontier under the Reduced Shear Approximation with $k$-cut Cosmic Shear
论文作者
论文摘要
IV阶段宇宙剪切调查的精度将使我们能够比以往任何时候都更小的物理量表,但是,重型物理学和非线性结构形成的模型不确定性将成为一个重大问题。 $ k $ -cut方法 - 在制作Bernardeau-Nishimichi-Taruya变换后应用红移依赖的$ \ ell $ - 可以降低对Baryonic物理学的敏感性;允许第四阶段的调查包括越来越高的$ \ ell $ modes的信息。在这里,我们解决了是否还可以减轻减少剪切近似的影响的问题;这在高$κ$,小规模政权中也很重要。放松这种近似的标准程序需要重复评估融合双光谱,因此,当包含在蒙特卡洛分析中时,计算量昂贵。我们发现,$ k $ - cut宇宙剪切过程抑制了$ W_0W_A $ CDM宇宙学参数偏见,而当$ \ ell $ - modes最高$ 5000 $时,探测了第四阶段实验的减少剪切近似值。偏移近似值的偏差所需的最大切割率低于显着性阈值,为$ k = 5.37 \,h {\ rm mpc}^{ - 1} $。通过此削减,相对于直接计算校正的情况,预测的$1σ$约束增加了所有参数的$ 10 \%$。与更保守的案例相比,这是约束的显着改善,即只有$ \ ell $ - 模型可探测到1500个,并且不使用$ k $ -cut。我们还重复了这一分析,以进行假设的,可比的运动学弱透镜调查。用于此分析的代码的关键部分是公开可用的。
The precision of Stage IV cosmic shear surveys will enable us to probe smaller physical scales than ever before, however, model uncertainties from baryonic physics and non-linear structure formation will become a significant concern. The $k$-cut method -- applying a redshift-dependent $\ell$-cut after making the Bernardeau-Nishimichi-Taruya transform -- can reduce sensitivity to baryonic physics; allowing Stage IV surveys to include information from increasingly higher $\ell$-modes. Here we address the question of whether it can also mitigate the impact of making the reduced shear approximation; which is also important in the high-$κ$, small-scale regime. The standard procedure for relaxing this approximation requires the repeated evaluation of the convergence bispectrum, and consequently can be prohibitively computationally expensive when included in Monte Carlo analyses. We find that the $k$-cut cosmic shear procedure suppresses the $w_0w_a$CDM cosmological parameter biases expected from the reduced shear approximation for Stage IV experiments, when $\ell$-modes up to $5000$ are probed. The maximum cut required for biases from the reduced shear approximation to be below the threshold of significance is at $k = 5.37 \, h{\rm Mpc}^{-1}$. With this cut, the predicted $1σ$ constraints increase, relative to the case where the correction is directly computed, by less than $10\%$ for all parameters. This represents a significant improvement in constraints compared to the more conservative case where only $\ell$-modes up to 1500 are probed, and no $k$-cut is used. We also repeat this analysis for a hypothetical, comparable kinematic weak lensing survey. The key parts of code used for this analysis are made publicly available.