论文标题

使用最佳数据依赖性三角剖分从潮汐仪记录重建动态海面

Reconstructing the Dynamic Sea Surface from Tide Gauge Records Using Optimal Data-Dependent Triangulations

论文作者

Nitzke, Alina, Niedermann, Benjamin, Fenoglio-Marc, Luciana, Kusche, Jürgen, Haunert, Jan-Henrik

论文摘要

卫星高度计时之前的海平面重建通常源自潮汐量表记录。但是,大多数算法都认为,海平面变异性的模式是固定的,这在几十年中并非如此。在这里,我们建议一种基于量规站网络的优化数据依赖性三角剖分的方法。数据依赖性三角剖分是对点集的三角形,不仅依赖于2D点位置,还依赖于其他数据(例如高程,异常)。在本文中,我们展示了如何使用Min-Error标准的数据依赖性三角剖分在较长时间内重建海面异常的2D地图,假设高度异常在稀疏的站点处连续监测,并且此外,此外,在较短的时间段内,在较短的时间段内还提供了参考表面的观察结果。我们方法的核心是基于可用参考数据学习最小三角剖分的想法,并随后使用学到的三角剖分来计算时期的零件线性表面模型,其中仅给出了监视站的观察值。我们将Min-Error三角剖分的方法与$ K $ - 订单Delaunay三角剖分结合在一起,以稳定三角形。我们表明,这种方法通过将潮汐量规测量与现代卫星高度测定数据相结合,对海面的重建是有利的。我们展示了如何使用整数线性编程来学习微小的三角剖分和$ k $ k $ rorder delaunay三角剖分。我们面对反对Delaunay三角剖分的重建。借助北海的实际数据,我们表明,最小的三角剖分的表现可以及时超过18年的重建,而$ k $ delaunay min-error三角剖分甚至$ k = 2 $。

Reconstructions of sea level prior to the satellite altimeter era are usually derived from tide gauge records; however most algorithms for this assume that modes of sea level variability are stationary which is not true over several decades. Here we suggest a method that is based on optimized data-dependent triangulations of the network of gauge stations. Data-dependent triangulations are triangulations of point sets that rely not only on 2D point positions but also on additional data (e.g. elevation, anomalies). In this article, we show how data-dependent triangulations with min-error criteria can be used to reconstruct 2D maps of the sea surface anomaly over a longer time period, assuming that height anomalies are continuously monitored at a sparse set of stations and, in addition, observations of a reference surface is provided over a shorter time period. At the heart of our method is the idea to learn a min-error triangulation based on the available reference data, and to use the learned triangulation subsequently to compute piece-wise linear surface models for epochs in which only observations from monitoring stations are given. We combine our approach of min-error triangulation with $k$-order Delaunay triangulation to stabilize the triangles geometrically. We show that this approach is advantageous for the reconstruction of the sea surface by combining tide gauge measurements with data of modern satellite altimetry. We show how to learn a min-error triangulation and a min-error $k$-order Delaunay triangulation using integer linear programming. We confront our reconstructions against the Delaunay triangulation. With real data for the North Sea we show that the min-error triangulation outperforms the Delaunay method significantly for reconstructions back in time up to 18 years, and the $k$-order Delaunay min-error triangulation even up to 21 years for $k=2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源