论文标题

关于G跨编织类别的三类观点

A 3-categorical perspective on G-crossed braided categories

论文作者

Jones, Corey, Penneys, David, Reutter, David

论文摘要

编织的单体类别可以被视为一个$ 3 $类别,其中一个对象和一个$ 1 $塑料。在本文中,我们表明,更一般而言,具有一个对象的$ 3 $类别,由$ g $的元素给出的$ 1 $的跨性别对应于$ g $ - 跨性的编织类别,某些数学结构已成为重要的低维量子场理论的重要不变性。更准确地说,我们表明,配备了3件功能的$ \ m atrm {b} g \ to \ mathcal {c} $的4类,$ 3 $ - 类别$ \ mathcal {c} $,本质上是$ 1 $ -morphisms的类别,与$ 2 $ -2 $ -CATEROSS相等。这为$ g $涂的编织类别的各种结构提供了统一的方法。

A braided monoidal category may be considered a $3$-category with one object and one $1$-morphism. In this paper, we show that, more generally, $3$-categories with one object and $1$-morphisms given by elements of a group $G$ correspond to $G$-crossed braided categories, certain mathematical structures which have emerged as important invariants of low-dimensional quantum field theories. More precisely, we show that the 4-category of $3$-categories $\mathcal{C}$ equipped with a 3-functor $\mathrm{B}G \to \mathcal{C}$ which is essentially surjective on objects and $1$-morphisms is equivalent to the $2$-category of $G$-crossed braided categories. This provides a uniform approach to various constructions of $G$-crossed braided categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源