论文标题

不确定性的非参数模型的直接体积渲染

Direct Volume Rendering with Nonparametric Models of Uncertainty

论文作者

Athawale, Tushar, Ma, Bo, Sakhaee, Elham, Johnson, Chris R., Entezari, Alireza

论文摘要

我们提出了一个非参数统计框架,用于对直接体积渲染(DVR)中数据不确定性的量化,分析和传播。最先进的统计DVR框架允许在可视化不确定数据时保留地面真相函数的传输函数(TF);但是,现有框架仅限于不确定性的参数模型。在本文中,我们通过扩展非参数分布的DVR框架来解决现有DVR框架的局限性。我们利用分位数插值技术来得出概率分布,该分布代表封闭形式的观看射线样品强度中的不确定性,从而可以进行准确有效的计算。我们通过与平均场和参数统计模型(例如均匀和高斯以及高斯混合物)的定性和定量比较来评估我们提出的非参数统计模型。此外,我们将最新渲染参数框架的扩展为2D TFS,以改善DVR分类。我们展示了我们的不确定性量化框架的适用性,用于集合,倒数采样和标量字段数据集的双变量版本。

We present a nonparametric statistical framework for the quantification, analysis, and propagation of data uncertainty in direct volume rendering (DVR). The state-of-the-art statistical DVR framework allows for preserving the transfer function (TF) of the ground truth function when visualizing uncertain data; however, the existing framework is restricted to parametric models of uncertainty. In this paper, we address the limitations of the existing DVR framework by extending the DVR framework for nonparametric distributions. We exploit the quantile interpolation technique to derive probability distributions representing uncertainty in viewing-ray sample intensities in closed form, which allows for accurate and efficient computation. We evaluate our proposed nonparametric statistical models through qualitative and quantitative comparisons with the mean-field and parametric statistical models, such as uniform and Gaussian, as well as Gaussian mixtures. In addition, we present an extension of the state-of-the-art rendering parametric framework to 2D TFs for improved DVR classifications. We show the applicability of our uncertainty quantification framework to ensemble, downsampled, and bivariate versions of scalar field datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源