论文标题

塑造针对对抗攻击的防御

Shape Defense Against Adversarial Attacks

论文作者

Borji, Ali

论文摘要

人类严重依赖形状信息来识别对象。相反,卷积神经网络(CNN)更偏向于质地。这也许是CNN容易受到对抗例子的影响的主要原因。在这里,我们探讨了如何将形状偏差纳入CNN以提高其稳健性。提出了两种算法,该算法是基于以下观察结果,即边缘对中等不可察觉的扰动是不变的。在第一个中,分类器是在带有边缘图作为附加通道的图像上对对抗训练的。在推理时,边缘图被重新计算并与图像串联。在第二个算法中,对有条件的gan进行了训练,可以将边缘图(从干净和/或扰动的图像)转换为干净的图像。推理是通过与输入边缘映射相对应的生成图像进行的。 10个数据集的广泛实验证明了针对FGSM和$ \ ell_ \ Infty $ PGD-40攻击的算法的有效性。此外,我们表明a)边缘信息还可以使其他对抗性训练方法受益,而b)在边缘启动输入中训练的CNN比仅在RGB图像上训练的CNN,对自然图像损坏(例如运动模糊,脉冲噪声和JPEG压缩)更为强大。从更广泛的角度来看,我们的研究表明,CNN不能充分说明对鲁棒性至关重要的图像结构。代码可在:〜\ url {https://github.com/aliborji/shapefense.git}中获得。

Humans rely heavily on shape information to recognize objects. Conversely, convolutional neural networks (CNNs) are biased more towards texture. This is perhaps the main reason why CNNs are vulnerable to adversarial examples. Here, we explore how shape bias can be incorporated into CNNs to improve their robustness. Two algorithms are proposed, based on the observation that edges are invariant to moderate imperceptible perturbations. In the first one, a classifier is adversarially trained on images with the edge map as an additional channel. At inference time, the edge map is recomputed and concatenated to the image. In the second algorithm, a conditional GAN is trained to translate the edge maps, from clean and/or perturbed images, into clean images. Inference is done over the generated image corresponding to the input's edge map. Extensive experiments over 10 datasets demonstrate the effectiveness of the proposed algorithms against FGSM and $\ell_\infty$ PGD-40 attacks. Further, we show that a) edge information can also benefit other adversarial training methods, and b) CNNs trained on edge-augmented inputs are more robust against natural image corruptions such as motion blur, impulse noise and JPEG compression, than CNNs trained solely on RGB images. From a broader perspective, our study suggests that CNNs do not adequately account for image structures that are crucial for robustness. Code is available at:~\url{https://github.com/aliborji/Shapedefense.git}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源