论文标题

多项式优化中基本问题的复杂性方面

Complexity Aspects of Fundamental Questions in Polynomial Optimization

论文作者

Zhang, Jeffrey

论文摘要

在本文中,我们解决了多项式优化中一些基本问题的计算复杂性。其中包括(i)找到局部最低限度的问题,(ii)测试一个点的局部最小值,以及(iii)确定最佳价值的实现。我们的结果表征了这三个问题的复杂性,这些问题对以前文献的所有定义多项式都打开了。 关于(i)和(ii),我们表明,除非p = np,否则不可能有多项式时间算法在欧几里得距离内找到一个点$ c^n $(对于任何常数$ c $)的本地最小值的$ n $ n $变量四边形程序。相比之下,我们表明,可以通过半多项式(SDP)有效地找到立方多项式的局部最小值。我们证明,立方多项式的二阶点允许有效的半限定表示,即使它们的关键点是NP固定的。我们还提供了有效检查的必要条件,以使立方多项式的局部局部最小化。 关于(iii),我们证明,测试具有有限最佳值的二次约束二次程序是否具有最佳解决方案。我们还表明,对目标函数的测试胁迫性,可行集合的紧凑性以及与可行集合描述相关的阿基米德属性都是NP-HARD。我们还给出了强制性多项式的新表征,该表征将自己赋予了DSDP的层次结构。 在我们的最后一章中,我们提出了一个SDP放松,以在Bimatrix游戏中找到近似Nash Equilibria。我们表明,对于对称游戏,可以从任何等级2解决方案中有效回收$ 1/3 $ - 纳什的平衡。我们还提出了与NASH均衡有关的NP硬性问题的SDP松弛,例如在任何NASH平衡下找到最高可实现的福利。

In this thesis, we settle the computational complexity of some fundamental questions in polynomial optimization. These include the questions of (i) finding a local minimum, (ii) testing local minimality of a point, and (iii) deciding attainment of the optimal value. Our results characterize the complexity of these three questions for all degrees of the defining polynomials left open by prior literature. Regarding (i) and (ii), we show that unless P=NP, there cannot be a polynomial-time algorithm that finds a point within Euclidean distance $c^n$ (for any constant $c$) of a local minimum of an $n$-variate quadratic program. By contrast, we show that a local minimum of a cubic polynomial can be found efficiently by semidefinite programming (SDP). We prove that second-order points of cubic polynomials admit an efficient semidefinite representation, even though their critical points are NP-hard to find. We also give an efficiently-checkable necessary and sufficient condition for local minimality of a point for a cubic polynomial. Regarding (iii), we prove that testing whether a quadratically constrained quadratic program with a finite optimal value has an optimal solution is NP-hard. We also show that testing coercivity of the objective function, compactness of the feasible set, and the Archimedean property associated with the description of the feasible set are all NP-hard. We also give a new characterization of coercive polynomials that lends itself to a hierarchy of SDPs. In our final chapter, we present an SDP relaxation for finding approximate Nash equilibria in bimatrix games. We show that for a symmetric game, a $1/3$-Nash equilibrium can be efficiently recovered from any rank-2 solution to this relaxation. We also propose SDP relaxations for NP-hard problems related to Nash equilibria, such as that of finding the highest achievable welfare under any Nash equilibrium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源