论文标题
关于Rankin-Selberg L功能的增长$ SL(2)$
On the growth of Rankin-Selberg L-functions for $SL(2)$
论文作者
论文摘要
在本文中,我们使用Eisenstein系列的Supnorm建立了Rankin-Selberg $ l $ l $ l $ unction的界限,并在真实的群体上建立了纯粹代表的理论指数。因此,我们获得了一个子概要限制$ l(\ frac {1} {2}+ it,f_1 \ times f_2)\ leq c(1+ | t |)^{\ frac {5} {5} {6} {6}+ε} $ for两种maass cusp of $ sl($ sl($ sl)$ sl(2,\ mathb z)$。
In this paper, we establish bounds of the Rankin-Selberg $L$-function for $SL(2)$ using the supnorm of the Eisenstein series and a purely representation theoretic index over the real group. Consequently, we obtain a subconvexity bound $L(\frac{1}{2}+ it, f_1 \times f_2) \leq C (1+ |t|)^{\frac{5}{6}+ε}$ for two Maass cusp forms of $SL(2, \mathbb Z)$.