论文标题

跨传输信息最大化,用于几次学习

Transductive Information Maximization For Few-Shot Learning

论文作者

Boudiaf, Malik, Masud, Ziko Imtiaz, Rony, Jérôme, Dolz, José, Piantanida, Pablo, Ayed, Ismail Ben

论文摘要

我们介绍了几次学习的转导信息最大化(TIM)。我们的方法与基于支持集的监督损失结合使用,最大限度地提高了查询功能与其标签预测之间的相互信息。此外,我们为我们的相互信息损失提出了一个新的交替方向求解器,该求解器在基于梯度的优化方面大大加快了转导推断的趋同,同时产生了相似的精度。 TIM推断是模块化的:它可以在任何基础训练特征提取器的顶部使用。遵循标准的转导数次射击设置,我们的全面实验表明,蒂姆在各种数据集和网络上都胜过最先进的方法,同时在固定特征提取器的顶部使用了在基本类别上用简单的跨凝胶培训的固定特征提取器,而无需诉诸复杂的元学习方案。它始终比最佳性能方法的准确性提高了2%至5%,不仅在所有成熟的少数基准测试中,而且在更具挑战性的情况下,域的变化和大量的类别。

We introduce Transductive Infomation Maximization (TIM) for few-shot learning. Our method maximizes the mutual information between the query features and their label predictions for a given few-shot task, in conjunction with a supervision loss based on the support set. Furthermore, we propose a new alternating-direction solver for our mutual-information loss, which substantially speeds up transductive-inference convergence over gradient-based optimization, while yielding similar accuracy. TIM inference is modular: it can be used on top of any base-training feature extractor. Following standard transductive few-shot settings, our comprehensive experiments demonstrate that TIM outperforms state-of-the-art methods significantly across various datasets and networks, while used on top of a fixed feature extractor trained with simple cross-entropy on the base classes, without resorting to complex meta-learning schemes. It consistently brings between 2% and 5% improvement in accuracy over the best performing method, not only on all the well-established few-shot benchmarks but also on more challenging scenarios,with domain shifts and larger numbers of classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源