论文标题
欧几里得QED的小波正则化
Wavelet regularization of Euclidean QED
论文作者
论文摘要
提出了量子电动力学在功能空间中的正则化$ψ_A(x)$,这既取决于$ x $ and scale $ a $。根据$ \ mathbb {r}^4 $ euclidean空间中的连续小波变换来定义比例依赖性函数,高斯的衍生物充当基本小波。真空极化和有效耦合常数对比例参数的依赖性以一环近似计算,以$ p^2 \ gg 4m^2 $。
The regularization of quantum electrodynamics in the space of functions $ψ_a(x)$, which depend on both the position $x$ and the scale $a$, is presented. The scale-dependent functions are defined in terms of the continuous wavelet transform in $\mathbb{R}^4$ Euclidean space, with the derivatives of Gaussian served as basic wavelets. The vacuum polarization and the dependence of the effective coupling constant on the scale parameters are calculated in one-loop approximation in the limit $p^2 \gg 4m^2$.