论文标题
用于评估安全至关重要系统的神经桥采样
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
论文作者
论文摘要
基于学习的方法越来越多地发现在自动驾驶和医疗机器人等安全至关重要领域中的应用。由于危险事件的罕见性质,现实世界的测试非常昂贵且不可估量。在这项工作中,我们在模拟中采用了一种概率方法来进行安全评估,我们关注计算危险事件的可能性。我们开发了一种新型的稀有事实模拟方法,该方法结合了探索,开发和优化技术以找到故障模式并估计其发生率。根据统计和计算效率,我们为我们的方法的性能提供了严格的保证。最后,我们证明了方法在各种情况下的功效,说明了它作为快速灵敏度分析和模型比较的工具的有用性,这对于开发和测试安全至关重要的自主系统至关重要。
Learning-based methodologies increasingly find applications in safety-critical domains like autonomous driving and medical robotics. Due to the rare nature of dangerous events, real-world testing is prohibitively expensive and unscalable. In this work, we employ a probabilistic approach to safety evaluation in simulation, where we are concerned with computing the probability of dangerous events. We develop a novel rare-event simulation method that combines exploration, exploitation, and optimization techniques to find failure modes and estimate their rate of occurrence. We provide rigorous guarantees for the performance of our method in terms of both statistical and computational efficiency. Finally, we demonstrate the efficacy of our approach on a variety of scenarios, illustrating its usefulness as a tool for rapid sensitivity analysis and model comparison that are essential to developing and testing safety-critical autonomous systems.