论文标题

用最低抽样工作的差异成像中的瞬态识别的机器学习

Machine Learning for Transient Recognition in Difference Imaging With Minimum Sampling Effort

论文作者

Mong, Yik-Lun, Ackley, Kendall, Galloway, Duncan, Killestein, Tom, Lyman, Joe, Steeghs, Danny, Dhillon, Vik, O'Brien, Paul, Ramsay, Gavin, Poshyachinda, Saran, Kotak, Rubina, Nuttall, Laura, Pall'e, Enric, Pollacco, Don, Thrane, Eric, Dyer, Martin, Ulaczyk, Krzysztof, Cutter, Ryan, McCormac, James, Chote, Paul, Levan, Andrew, Marsh, Tom, Stanway, Elizabeth, Gompertz, Ben, Wiersema, Klaas, Chrimes, Ashley, Obradovic, Alexander, Mullaney, James, Daw, Ed, Littlefair, Stuart, Maund, Justyn, Makrygianni, Lydia, Burhanudin, Umar, Starling, Rhaana, Eyles, Rob, Tooke, Spencer, Duffy, Christopher, Aukkaravittayapun, Suparerk, Sawangwit, Utane, Awiphan, Supachai, Mkrtichian, David, Irawati, Puji, Mattila, Seppo, Heikkil"a, Teppo, Breton, Rene, Kennedy, Mark, Mata-Sanchez, Daniel, Rol, Evert

论文摘要

时间域天文学产生的观察数据量呈指数构成。仅人类检查并不是从数据中识别真正瞬态的有效方法。需要自动的真实模糊分类器,并且通常使用机器学习技术来实现此目标。由于人类验证的要求,建造具有足够数量的经过验证的瞬变的训练集是具有挑战性的。我们介绍了通过使用科学图像中的所有检测来创建训练集的方法,以作为真实检测的样本和差异图像中的所有检测,这些图像是由差成像的过程生成的,以检测瞬变,以作为虚假检测的样品。该策略有效地最大程度地减少了监督机器学习方法的数据标签所涉及的劳动力。我们通过使用它来训练几个分类器来证明训练集的实用性,该分类器用作特征表示,以归一化的像素值为中心的21 by-21像素邮票,该邮票以检测位置为中心,并用重力波瞬态观察者(GOTO)原型观察到。经过此策略训练的真实阳离子分类器可以以1%的误报率在实际检测上提供多达95%的预测准确性。

The amount of observational data produced by time-domain astronomy is exponentially in-creasing. Human inspection alone is not an effective way to identify genuine transients fromthe data. An automatic real-bogus classifier is needed and machine learning techniques are commonly used to achieve this goal. Building a training set with a sufficiently large number of verified transients is challenging, due to the requirement of human verification. We presentan approach for creating a training set by using all detections in the science images to be thesample of real detections and all detections in the difference images, which are generated by the process of difference imaging to detect transients, to be the samples of bogus detections. This strategy effectively minimizes the labour involved in the data labelling for supervised machine learning methods. We demonstrate the utility of the training set by using it to train several classifiers utilizing as the feature representation the normalized pixel values in 21-by-21pixel stamps centered at the detection position, observed with the Gravitational-wave Optical Transient Observer (GOTO) prototype. The real-bogus classifier trained with this strategy can provide up to 95% prediction accuracy on the real detections at a false alarm rate of 1%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源