论文标题
2D随机Cahn-Hilliard-Navier-Stokes方程的不变度量
Invariant measure for 2D stochastic Cahn-Hilliard-Navier-Stokes equations
论文作者
论文摘要
使用Maslowski和Seidler方法,在状态空间$ L_X^2 \ times h^1 $中证明了具有二维Cahn-Hilliard-navier-Stokes方程的不变性度量的存在。同样,使用随机的紧凑性参数研究了全局路线溶液的存在。
Using the Maslowski and Seidler method, the existence of invariant measure for 2-dimensional stochastic Cahn-Hilliard-Navier-Stokes equations with multiplicative noise is proved in state space $L_x^2\times H^1$, working with the weak topology. Also, the existence of global pathwise solution is investigated using the stochastic compactness argument.