论文标题
VAIM:影响最大化的视觉分析
VAIM: Visual Analytics for Influence Maximization
论文作者
论文摘要
在社交网络中,个人的决定受到朋友和熟人建议的强烈影响。影响最大化(IM)问题要求选择一组用户集,以最大程度地利用影响力传播,即,受到种子触发的随机扩散过程影响的预期用户数量。在本文中,我们提出了Vaim,这是一种视觉分析系统,该系统支持用户分析由不同的IM算法确定的信息扩散过程。通过使用VAIM可以:(i)模拟在大型网络上给定种子集的信息扩散,(ii)分析和比较不同种子集的有效性,(iii)修改种子集以改善相应的影响范围。
In social networks, individuals' decisions are strongly influenced by recommendations from their friends and acquaintances. The influence maximization (IM) problem asks to select a seed set of users that maximizes the influence spread, i.e., the expected number of users influenced through a stochastic diffusion process triggered by the seeds. In this paper, we present VAIM, a visual analytics system that supports users in analyzing the information diffusion process determined by different IM algorithms. By using VAIM one can: (i) simulate the information spread for a given seed set on a large network, (ii) analyze and compare the effectiveness of different seed sets, and (iii) modify the seed sets to improve the corresponding influence spread.