论文标题

企业Ehrhart理论和计算自由段

Coprime Ehrhart theory and counting free segments

论文作者

Manecke, Sebastian, Sanyal, Raman

论文摘要

如果其顶点是它包含的唯一晶格点,则晶格多层是“自由”(或“空”)。在估值理论的背景下,Klain(1999)提出了研究$α_i(p; n)$的功能,该功能计算了$ np $中的免费多型的数量。对于$ i = 1 $,这是著名的ehrhart多项式。对于$ i> 3 $,计算可能是不可能的,对于$ i = 2,3 $,计算上具有挑战性。 在本文中,我们开发了一种副EHRHART函数的理论,该理论用相对优质的坐标计数晶格点,并使用它来计算单模型简单的$α_2(p; n)$。我们表明,可以从ehrhart多项式中明确确定coprime ehrhart函数,并为组合计数提供了一些应用。

A lattice polytope is "free" (or "empty") if its vertices are the only lattice points it contains. In the context of valuation theory, Klain (1999) proposed to study the functions $α_i(P;n)$ that count the number of free polytopes in $nP$ with $i$ vertices. For $i=1$, this is the famous Ehrhart polynomial. For $i > 3$, the computation is likely impossible and for $i=2,3$ computationally challenging. In this paper, we develop a theory of coprime Ehrhart functions, that count lattice points with relatively prime coordinates, and use it to compute $α_2(P;n)$ for unimodular simplices. We show that the coprime Ehrhart function can be explicitly determined from the Ehrhart polynomial and we give some applications to combinatorial counting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源