论文标题
使用地理图像和专家知识的深度学习信号强度预测
Deep Learning-based Signal Strength Prediction Using Geographical Images and Expert Knowledge
论文作者
论文摘要
准确预测无线电信号质量参数的方法对于优化移动网络至关重要,也是将来的自主驾驶解决方案的必要性。当前的经验模型的功率距离关系努力描述影响信号质量参数的特定局部地理统计数据。经验模型的使用通常会导致信号质量参数过度估计,并且需要进行其他校准研究。在本文中,我们提出了一种新颖的模型辅助学习方法,用于路径损失预测,该方法隐含地从接收器位置的顶级视图地理图像中提取无线电传播特征。在全面的评估活动中,我们将提出的方法应用于广泛的现实数据集,该数据集由五种不同的方案和超过125.000个单个测量值组成。发现1)与射线追踪技术相比,新方法将平均预测误差降低了53%,2)图像所跨度跨越的250-300米的距离提供了必要的细节水平,3)跨固有不同数据源可实现大约6 db的根均值误差。
Methods for accurate prediction of radio signal quality parameters are crucial for optimization of mobile networks, and a necessity for future autonomous driving solutions. The power-distance relation of current empirical models struggles with describing the specific local geo-statistics that influence signal quality parameters. The use of empirical models commonly results in an over- or under-estimation of the signal quality parameters and require additional calibration studies. In this paper, we present a novel model-aided deep learning approach for path loss prediction, which implicitly extracts radio propagation characteristics from top-view geographical images of the receiver location. In a comprehensive evaluation campaign, we apply the proposed method on an extensive real-world data set consisting of five different scenarios and more than 125.000 individual measurements. It is found that 1) the novel approach reduces the average prediction error by up to 53% in comparison to ray-tracing techniques, 2) A distance of 250-300 meters spanned by the images offer the necessary level of detail, 3) Predictions with a root-mean-squared error of approximately 6 dB is achieved across inherently different data sources.