论文标题

非线性动态网络的控制节点选择算法

Control Node Selection Algorithm for Nonlinear Dynamic Networks

论文作者

Haber, Aleksandar, Nugroho, Sebastian A., Torres, Patricio, Taha, Ahmad F.

论文摘要

选择控制节点和为非线性网络动力学设计控制动作的耦合问题是许多不同领域的应用的基本科学问题。这些问题是针对线性动力学的彻底研究的。但是,尽管有许多开放的研究问题,但非线性网络动力学的方法的发展较小。正如各种研究所观察到的那样,选择控制节点的基于图形的可控性方法可能会导致非线性动力学的显着次优控制性能。本文中,我们提出了一种新的,直观的,简单的方法,用于使用非线性动力学的复杂网络同时控制节点选择和控制序列设计。该方法是通过将控制节点选择问题纳入开环预测控制成本函数并使用网格自适应直接搜索方法解决所得的混合智能优化问题来开发的。开发的框架在数值上是强大的,可以处理硬网络,具有非平滑动力学的网络以及控制和执行器约束。该方法的数值性能通过在典型的振荡器和关联内存网络上进行测试来证明该方法的良好性能。可以在线提供可以轻松适应其他复杂系统模型的开发代码。

The coupled problems of selecting control nodes and designing control actions for nonlinear network dynamics are fundamental scientific problems with applications in many diverse fields. These problems are thoroughly studied for linear dynamics; however, in spite of a number of open research questions, methods for nonlinear network dynamics are less developed. As observed by various studies, the prevailing graph-based controllability approaches for selecting control nodes might result in significantly suboptimal control performance for nonlinear dynamics. Herein we present a new, intuitive, and simple method for simultaneous control node selection and control sequence design for complex networks with nonlinear dynamics. The method is developed by incorporating the control node selection problem into an open-loop predictive control cost function and by solving the resulting mixed-integer optimization problem using a mesh adaptive direct search method. The developed framework is numerically robust and can deal with stiff networks, networks with non-smooth dynamics, as well as with control and actuator constraints. Good numerical performance of the method is demonstrated by testing it on prototypical Duffing oscillator and associative memory networks. The developed codes that can easily be adapted to models of other complex systems are available online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源