论文标题
Q呈现的Yang-Mills的Schur相关函数
Schur correlation functions from q-deformed Yang-Mills
论文作者
论文摘要
我们在Q传统的2D Yang-Mills理论中构造了波函数,该理论计算了与4D $ n = 2 $ scfts相关的VOA中仿射电流的圆环相关函数。然后,这些波函数被证明可以减少$ t [su(n)] $理论中一组库仑分支运算符的拓扑相关器,从中可以计算出4D TN理论的3D镜偶对偶中的这些相关器。
We construct the wave functions in the q-deformed 2d Yang-Mills theory that compute torus correlation functions of affine currents in the VOA associated to a class of 4d $N = 2$ SCFTs. These wave functions are then shown to reduce to the topological correlators of a set of Coulomb branch operators in the $T[SU(N)]$ theory, from which those correlators in the 3d mirror dual of the 4d TN theories can be computed.