论文标题

随机施纳仪中的简单跨越树

Simplicial spanning trees in random Steiner complexes

论文作者

Rosenthal, Ron, Tenenbaum, Lior

论文摘要

图$ g $中的生成树$ t $是$ g $的子图,其顶点集与$ g $,这是一棵树。 1981年,麦凯(McKay)证明了在随机$ k $ groumard图中跨越树木数量的渐近结果。在本文中,我们证明了McKay对随机$ d $维的结果的高度概括,$ k $ - $ n $ dertices上的规范简单复合物表明,简化的简单跨越的树是$(ξ_{ξ_{dem {d,k}+n} $ ntty^$ nty} $ { $ξ_{d,k} $是一个明确的常数,提供$ k> 4d^2+d+2 $。我们证明的一个关键要素是,这种随机复合物与$ d $ d $ $ k $ to-k $的植木综合体的局部收敛,这使我们能够将麦凯的结果推广到Kesten-McKay分布中。

A spanning tree $T$ in a graph $G$ is a sub-graph of $G$ with the same vertex set as $G$ which is a tree. In 1981, McKay proved an asymptotic result regarding the number of spanning trees in random $k$-regular graphs. In this paper we prove a high-dimensional generalization of McKay's result for random $d$-dimensional, $k$-regular simplicial complexes on $n$ vertices, showing that the weighted number of simplicial spanning trees is of order $(ξ_{d,k}+o(1))^{\binom{n}{d}}$ as $n\to\infty$, where $ξ_{d,k}$ is an explicit constant, provided $k> 4d^2+d+2$. A key ingredient in our proof is the local convergence of such random complexes to the $d$-dimensional, $k$-regular arboreal complex, which allows us to generalize McKay's result regarding the Kesten-McKay distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源