论文标题
Schur的指数猜想 - 指数5和指数的反例9
Schur's exponent conjecture -- counterexamples of exponent 5 and exponent 9
论文作者
论文摘要
长期以来,有一个长期的猜想归因于I Schur,如果$ g $是一个有限的集团,带有Schur乘数$ M(g)$,那么$ m(g)$的指数将划分$ g $的指数。很容易看出,这个猜想适用于指数2和指数3,但是自1974年以来就知道该猜想失败了指数4。在本说明中,我给出了一个$ g $的示例,其中包括$ g $,带有schur乘数$ m(g)指数25的$ m(g)$ 25的示例,以及与schur multipliper $ m m $ m $ m(a)$ m(a)$ a(a)$ m(a)$ a $ a(a)的示例。
There is a long-standing conjecture attributed to I Schur that if $G$ is a finite group with Schur multiplier $M(G)$ then the exponent of $M(G)$ divides the exponent of $G$. It is easy to see that this conjecture holds for exponent 2 and exponent 3, but it has been known since 1974 that the conjecture fails for exponent 4. In this note I give an example of a group $G$ with exponent 5 with Schur multiplier $M(G)$ of exponent 25, and an example of a group $A$ of exponent 9 with Schur multiplier $M(A)$ of exponent 27.