论文标题
关于可还原多项式的分布
On the distribution of reducible polynomials
论文作者
论文摘要
令y_n(t)表示环z上所有多项式的集合,该集合在q和n> 1上可还原,高度不大于t。我们表明| y_n(t)的真实数量级|在特殊情况n = 2中等于t^2 log t,每个n> 2等于t^n。我们还确定了y_n(t)某些有趣子集的大小的真实数量级。
Let Y_n(t) denote the set of all polynomials over the ring Z which are reducible over the field Q and of degree n>1 and of height not greater than t. We show that the true order of magnitude of |Y_n(t)| equals t^2 log t in the special case n=2 and it equals t^n for each n>2. We also determine the true order of magnitude of the size of certain interesting subsets of Y_n(t).