论文标题

膨胀的动态复杂性

Dynamic Complexity of Expansion

论文作者

Datta, Samir, Tawari, Anuj, Vasudev, Yadu

论文摘要

动态复杂性是由Immerman和Patnaik \ cite {patnaikimmeran97}引入的(另请参见\ cite {dongst95})。在最近的过去,它引起了人们的兴趣,请参见\ cite {dattahk14,zeumes15,munozvz16,bouyerj17,zeume17,dkmsz18,dmvz18,dmvz18,barcelorz18,barcelorz18,dmsvz19,dmsvz19,dmsvz19,schmidtsvzk20,dkmtvz20,dkmtvz20,dkmtvz20,dkmtvz20,dkmtvz20,dkmtvz20,dkmtvz20,dkmtvz20,dkmtvz20,dkmtvz20,dkmtvz20,dkmtvz20,dkmtvz20,线性代数的使用一直是其中一些论文的显着特征。我们扩展了此主题,以表明可以在$ \ dynacz $(也称为$ \ dynfo $的类中的差异版本扩展)中保持在批处理更改(\ frac {\ frac {\ log {n}} $ gog} $ o(n} $ log}的$ o(插入和删除)下, 这项工作的光谱图理论材料基于羽衣甘蓝 - 夏德里\ cite {kales11}的论文。我们的主要技术贡献是维持$ \ dynacz $中有限程度的无向图的过渡矩阵的对数能力。

Dynamic Complexity was introduced by Immerman and Patnaik \cite{PatnaikImmerman97} (see also \cite{DongST95}). It has seen a resurgence of interest in the recent past, see \cite{DattaHK14,ZeumeS15,MunozVZ16,BouyerJ17,Zeume17,DKMSZ18,DMVZ18,BarceloRZ18,DMSVZ19,SchmidtSVZK20,DKMTVZ20} for some representative examples. Use of linear algebra has been a notable feature of some of these papers. We extend this theme to show that the gap version of spectral expansion in bounded degree graphs can be maintained in the class $\DynACz$ (also known as $\dynfo$, for domain independent queries) under batch changes (insertions and deletions) of $O(\frac{\log{n}}{\log{\log{n}}})$ many edges. The spectral graph theoretic material of this work is based on the paper by Kale-Seshadri \cite{KaleS11}. Our primary technical contribution is to maintain up to logarithmic powers of the transition matrix of a bounded degree undirected graph in $\DynACz$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源