论文标题
从Sasakian歧管上取出的准无剪切空位
Quasi-Einstein shearfree spacetimes lifted from Sasakian manifolds
论文作者
论文摘要
在本文中,我们证明了一定类的{\ it平滑} sasakian歧管,承认彼得罗夫II或D的四维准网络无剪切空间的升降机,这与Hill,Lewandowski和Lewandowski和Nurowski \ Cite \ Cite \ Cite \ Cite \ cite {hln}的类似结果相关。特别是,这适用于所有管状Cr歧管。此外,我们表明,任何带有基础的Kähler-Einstein歧管的Sasakian歧管,具有非零的爱因斯坦常数都可以提升到彼得罗夫II型或D的无剪切的爱因斯坦公制。
In this article we prove that a certain class of {\it smooth} Sasakian manifolds admits lifts to 4-dimensional quasi-Einstein shearfree spacetimes of Petrov type II or D. This is related to an analogous result by Hill, Lewandowski and Nurowski \cite{HLN} for general {\it real-analytic} CR manifolds. In particular, this holds for all tubular CR manifolds. Furthermore, we show that any Sasakian manifold with underlying Kähler-Einstein manifold with non-zero Einstein constant has a lift to a shearfree Einstein metric of Petrov type II or D.