论文标题

切断集团超出拉曼努扬的稀疏:切割与光谱稀疏的分离

Cut Sparsification of the Clique Beyond the Ramanujan Bound: A Separation of Cut Versus Spectral Sparsification

论文作者

Chen, Antares, Shi, Jonathan, Trevisan, Luca

论文摘要

我们证明,具有很高可能性的随机$ d $ - 规范图是该集团的剪刀,最多$ \ weft(2 \ sqrt {\ frac2π} + o_ {n,d}(n,d}(n,d}(1)(1)\ right)/\ sqrt d $ $ o_ {n,d}(1)$表示一个错误项,该术语取决于$ n $和$ d $,如果我们首先采取限制$ n \ rightArrow \ infty $,则为零,然后限制$ d \ rightarrow \ infty $。 这是通过使用Jagannath的技术分析线性削减和源自统计物理学的思想的SEN并通过Martingale不平等分析小削减来确定的。 我们还证明了该集团光谱稀疏中的新界限。如果$ g $是该集团和$ g $具有平均度$ d $的光谱稀疏器,我们证明近似错误至少是“ Ramanujan绑定'$(2-o_ {n,d}(n,d}(1))/\ sqrt d $,只要$ d $ d $ - d $ - d $ ramanujanuj $ at $ at a $ at a $ a的a(a)双重随机矩阵,或$ g $满足某些高的“奇数伪及时”属性。 $(2-o_ {n,d}(1))/\ sqrt d $; 总之,这些结果意味着光谱稀疏和减少稀疏之间存在分离。如果$ g $是$ n $顶点上的随机$ \ log n $ - 量级图,我们表明,$ g $的可能性很高,$ g $承认(加权子图)的平均度$ d $的削减稀疏器和最多$ $ $(1.595 \ ldots + o_ + o_ {n,d}(n,d}(1)/d}(1.595 $ g $具有平均度$ D $的近似错误至少$(2-O_ {n,d}(1))/\ sqrt d $。

We prove that a random $d$-regular graph, with high probability, is a cut sparsifier of the clique with approximation error at most $\left(2\sqrt{\frac 2 π} + o_{n,d}(1)\right)/\sqrt d$, where $2\sqrt{\frac 2 π} = 1.595\ldots$ and $o_{n,d}(1)$ denotes an error term that depends on $n$ and $d$ and goes to zero if we first take the limit $n\rightarrow \infty$ and then the limit $d \rightarrow \infty$. This is established by analyzing linear-size cuts using techniques of Jagannath and Sen derived from ideas in statistical physics, and analyzing small cuts via martingale inequalities. We also prove new lower bounds on spectral sparsification of the clique. If $G$ is a spectral sparsifier of the clique and $G$ has average degree $d$, we prove that the approximation error is at least the "Ramanujan bound'' $(2-o_{n,d}(1))/\sqrt d$, which is met by $d$-regular Ramanujan graphs, provided that either the weighted adjacency matrix of $G$ is a (multiple of) a doubly stochastic matrix, or that $G$ satisfies a certain high "odd pseudo-girth" property. The first case can be seen as an "Alon-Boppana theorem for symmetric doubly stochastic matrices," showing that a symmetric doubly stochastic matrix with $dn$ non-zero entries has a non-trivial eigenvalue of magnitude at least $(2-o_{n,d}(1))/\sqrt d$; the second case generalizes a lower bound of Srivastava and Trevisan, which requires a large girth assumption. Together, these results imply a separation between spectral sparsification and cut sparsification. If $G$ is a random $\log n$-regular graph on $n$ vertices, we show that, with high probability, $G$ admits a (weighted subgraph) cut sparsifier of average degree $d$ and approximation error at most $(1.595\ldots + o_{n,d}(1))/\sqrt d$, while every (weighted subgraph) spectral sparsifier of $G$ having average degree $d$ has approximation error at least $(2-o_{n,d}(1))/\sqrt d$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源