论文标题
$ \ mathbb Q $-FanoKähler-Einstein品种的分解定理
A decomposition theorem for $\mathbb Q$-Fano Kähler-Einstein varieties
论文作者
论文摘要
令$ x $为$ \ mathbb q $ -fano品种,承认Kähler-Einstein Metric。我们证明,根据Kähler-Einstein $ \ Mathbb Q $ -Fano品种的产物,在有限的准准盖上,$ x $ spline splans in Isometical spline spline splinementy splinement上。这依赖于一个非常普遍的分裂定理来代数构成的叶子。我们还证明,$ \ t_x $ by $ \ mathscr o_x $的规范扩展相对于抗神论极化是可以半固定的。
Let $X$ be a $\mathbb Q$-Fano variety admitting a Kähler-Einstein metric. We prove that up to a finite quasi-étale cover, $X$ splits isometrically as a product of Kähler-Einstein $\mathbb Q$-Fano varieties whose tangent sheaf is stable with respect to the anticanonical polarization. This relies among other things on a very general splitting theorem for algebraically integrable foliations. We also prove that the canonical extension of $T_X$ by $\mathscr O_X$ is semistable with respect to the anticanonical polarization.