论文标题
通过欧姆消散来限制天王星和海王星上的风深度
Constraining the Depth of the Winds on Uranus and Neptune via Ohmic Dissipation
论文作者
论文摘要
确定太阳系外行星中大气风的深度是行星科学中的关键主题。由于区域流量和行星磁场的相互作用,我们通过总诱导的欧姆消散对天王星和海王星的这些深度提供了约束。可以将上限放在整个内部的能量和熵通量的诱导耗散上。诱导的欧姆耗散直接与涉及流动材料的电导率曲线有关。我们提出了一种使用Ab Initi原模拟的结果来计算在行星条件下在行星条件下离子传导氢水混合物的电导率谱的方法。我们将此处方应用于文献中可用的几种冰巨型内部结构模型,其中所有重元素均由水代表。根据能量(熵)通量预算,天王星的最大渗透率超过$ 0.93R _ {\ Mathrm {\ ScriptScriptScriptStystyle {u}}} $($ 0.90R _ {\ Mathrm $ 0.95R _ {\ MATHRM {\ ScriptScriptStryle {n}}}} $($ 0.92R _ {\ Mathrm {\ ScriptScriptScriptStryle {n}}}} $)。这些渗透深度的结果是上限,并且与以前的估计值一致,基于纬向风对重力场的贡献。正如预期的那样,外部区域中水丰度较高的内部结构模型也具有较高的电导率,因此在较浅区域达到欧姆的极限。因此,我们的研究表明,天王星和海王星上的深座上风的可能性随着外层的水存在而显着下降。
Determining the depth of atmospheric winds in the outer planets of the Solar System is a key topic in planetary science. We provide constraints on these depths in Uranus and Neptune via the total induced Ohmic dissipation, due to the interaction of the zonal flows and the planetary magnetic fields. An upper bound can be placed on the induced dissipation via energy and entropy flux throughout the interior. The induced Ohmic dissipation is directly linked to the electrical conductivity profile of the materials involved in the flow. We present a method for calculating electrical conductivity profiles of ionically conducting hydrogen-helium-water mixtures under planetary conditions, using results from ab initio simulations. We apply this prescription on several ice giant interior structure models available in the literature, where all the heavy elements are represented by water. According to the energy (entropy) flux budget, the maximum penetration depth for Uranus lies above $0.93R_{\mathrm{\scriptscriptstyle{U}}}$ ($0.90R_{\mathrm{\scriptscriptstyle{U}}}$) and for Neptune above $0.95R_{\mathrm{\scriptscriptstyle{N}}}$ ($0.92R_{\mathrm{\scriptscriptstyle{N}}}$). These results for the penetration depths are upper bounds, and are consistent with previous estimates based on the contribution of the zonal winds to the gravity field. As expected, interior structure models with higher water abundance in the outer regions have also a higher electrical conductivity and therefore reach the Ohmic limit at shallower regions. Thus, our study shows that the likelihood of deep-seated winds on Uranus and Neptune drops significantly with the presence of water in the outer layers.