论文标题
钥匙网:光学转换卷积网络,用于保护视觉传感器
Key-Nets: Optical Transformation Convolutional Networks for Privacy Preserving Vision Sensors
论文作者
论文摘要
现代相机并非以计算机视觉或机器学习为目标应用设计。需要通过设计保留隐私的新型视力传感器,这些传感器不会泄漏私人信息,而仅收集目标机器学习任务所需的信息。在本文中,我们介绍了键网,该键网与使用光学/模拟转换的自定义视觉传感器配对,以使密钥网络可以对此转换的图像执行精确的加密推理,但是该图像不能由人类或任何其他键网解释。我们为适合键网的光学转换提供了五个足够的条件,并表明广义随机矩阵(例如尺度,偏差和分数像素散装)满足了这些条件。我们通过表明没有它可以直接在光学转换的图像上进行微调以进行面部识别和对象检测的网络进行效用/隐私权折衷来激励键网。最后,我们表明,键网等效于使用丘陵密码的同态加密,并在内存和运行时绑定上限,并使用用户指定的隐私参数四倍地缩放。因此,钥匙网是基于光学同态加密的第一个实用,高效和隐私的保存传感器。
Modern cameras are not designed with computer vision or machine learning as the target application. There is a need for a new class of vision sensors that are privacy preserving by design, that do not leak private information and collect only the information necessary for a target machine learning task. In this paper, we introduce key-nets, which are convolutional networks paired with a custom vision sensor which applies an optical/analog transform such that the key-net can perform exact encrypted inference on this transformed image, but the image is not interpretable by a human or any other key-net. We provide five sufficient conditions for an optical transformation suitable for a key-net, and show that generalized stochastic matrices (e.g. scale, bias and fractional pixel shuffling) satisfy these conditions. We motivate the key-net by showing that without it there is a utility/privacy tradeoff for a network fine-tuned directly on optically transformed images for face identification and object detection. Finally, we show that a key-net is equivalent to homomorphic encryption using a Hill cipher, with an upper bound on memory and runtime that scales quadratically with a user specified privacy parameter. Therefore, the key-net is the first practical, efficient and privacy preserving vision sensor based on optical homomorphic encryption.