论文标题

一个自举模型,以检测白人至上主义语料库中的滥用和意图

A Bootstrapped Model to Detect Abuse and Intent in White Supremacist Corpora

论文作者

Simons, B., Skillicorn, D. B.

论文摘要

情报分析师面临一个困难的问题:将极端主义的言论与潜在的极端主义暴力区分开来。许多人满足于对某些目标群体表达虐待,但只有少数表明愿意从事暴力行为。我们通过建立意图的预测模型,从一组意图单词的种子和表达意图的语言模板来解决这个问题。我们为意图设计了一个基于N-Gram和基于注意力的深层学习者,并将其用作Colearner,以改善预测和预测本身的基础。它们在几轮中收敛于稳定的预测。我们将意图的预测与滥用语言的预测合并,以检测表明对暴力行动渴望的帖子。我们通过将预测与众包标签进行比较来验证预测。该方法可以应用于可以定义合理起点的其他语言特性。

Intelligence analysts face a difficult problem: distinguishing extremist rhetoric from potential extremist violence. Many are content to express abuse against some target group, but only a few indicate a willingness to engage in violence. We address this problem by building a predictive model for intent, bootstrapping from a seed set of intent words, and language templates expressing intent. We design both an n-gram and attention-based deep learner for intent and use them as colearners to improve both the basis for prediction and the predictions themselves. They converge to stable predictions in a few rounds. We merge predictions of intent with predictions of abusive language to detect posts that indicate a desire for violent action. We validate the predictions by comparing them to crowd-sourced labelling. The methodology can be applied to other linguistic properties for which a plausible starting point can be defined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源