论文标题
量子场中的几何量子信息结构及其晶格模拟
Geometric Quantum Information Structure in Quantum Fields and their Lattice Simulation
论文作者
论文摘要
无质量非相关标量场理论的两个断开区域之间可蒸馏的纠缠的上限具有由几何衰减常数定义的指数衰减。当用空间晶格在短距离进行调节时,这种纠缠突然消失了,超出了无量纲的分离,定义了负面的球体。在两个空间维度中,我们通过一系列的晶格计算确定了一对磁盘之间的几何衰减常数以及对连续性的消极球的生长。假设此类量子信息量表也出现在量子染色体动力学(QCD)中,则在三空间维度上与量子场理论建立联系,在描述核子和核的低能动力学的有效田间理论中可能存在一个新的相对量表。我们强调了可蒸馏的纠缠结构对有效现场理论,晶格QCD计算和未来量子模拟的潜在影响。
An upper limit to distillable entanglement between two disconnected regions of massless non-interacting scalar field theory has an exponential decay defined by a geometric decay constant. When regulated at short distances with a spatial lattice, this entanglement abruptly vanishes beyond a dimensionless separation, defining a negativity sphere. In two spatial dimensions, we determine this geometric decay constant between a pair of disks and the growth of the negativity sphere toward the continuum through a series of lattice calculations. Making the connection to quantum field theories in three-spatial dimensions, assuming such quantum information scales appear also in quantum chromodynamics (QCD), a new relative scale may be present in effective field theories describing the low-energy dynamics of nucleons and nuclei. We highlight potential impacts of the distillable entanglement structure on effective field theories, lattice QCD calculations and future quantum simulations.