论文标题
节能移动边缘计算的不连续计算卸载
Discontinuous Computation Offloading for Energy-Efficient Mobile Edge Computing
论文作者
论文摘要
我们在5G网络以外的边缘计数器上提出了一种新型的节能动态计算卸载策略。目的是最大程度地减少整个系统的能耗,包括多个用户设备(UE),接入点(AP)和Edge服务器(ES),在端到端服务延迟的限制下,以及对无线界面上的数据包错误率性能。为了减少能源消耗,我们为用户,AP和ES利用低功率睡眠操作模式,将边缘计算范式从始终开始转移到始终可用的体系结构,能够保证具有最低能源消耗的按需目标服务质量。为此,我们提出了一种在线算法,用于对无线电和计算资源的动态和最佳编排,称为不连续计算卸载(Disco)。在这样的框架中,端到端延迟约束转化为整体排队延迟的限制,包括卸载服务的通信和计算阶段。在Lyapunov随机优化方面进行的迪斯科舞厅不需要有关卸载流量或无线电频道的统计信息的任何先验知识,并且可以满足用户施加的长期绩效限制。几个数值结果说明了该方法的优势。
We propose a novel strategy for energy-efficient dynamic computation offloading, in the context of edge-computing-aided beyond 5G networks. The goal is to minimize the energy consumption of the overall system, comprising multiple User Equipment (UE), an access point (AP), and an edge server (ES), under constraints on the end-to-end service delay and the packet error rate performance over the wireless interface. To reduce the energy consumption, we exploit low-power sleep operation modes for the users, the AP and the ES, shifting the edge computing paradigm from an always on to an always available architecture, capable of guaranteeing an on-demand target service quality with the minimum energy consumption. To this aim, we propose an online algorithm for dynamic and optimal orchestration of radio and computational resources called Discontinuous Computation Offloading (DisCO). In such a framework, end-to-end delay constraints translate into constraints on overall queueing delays, including both the communication and the computation phases of the offloading service. DisCO hinges on Lyapunov stochastic optimization, does not require any prior knowledge on the statistics of the offloading traffic or the radio channels, and satisfies the long-term performance constraints imposed by the users. Several numerical results illustrate the advantages of the proposed method.