论文标题
因果钻石和协变熵原理的路径积分
Path Integrals for Causal Diamonds and the Covariant Entropy Principle
论文作者
论文摘要
我们使用Euclidean方法研究了Minkowski,Schwarzschild,(Anti)De Sitter(Anti)De Sitter和Schwarzschild-De Sitter SpaceTime的因果钻石。因果钻石的无效边界显示为映射到父母歧管的欧几里得延续中的孤立穿刺。这些穿刺周围的边界项将欧几里得动作减少$ a_ \钻石/4 $,其中$ a_ \钻石$是钻石周围全息屏幕的区域。我们通过与钻石相关的重力自由度的最大熵来确定这些边界贡献。
We study causal diamonds in Minkowski, Schwarzschild, (anti) de Sitter, and Schwarzschild-de Sitter spacetimes using Euclidean methods. The null boundaries of causal diamonds are shown to map to isolated punctures in the Euclidean continuation of the parent manifold. Boundary terms around these punctures decrease the Euclidean action by $A_\diamond/4$, where $A_\diamond$ is the area of the holographic screen around the diamond. We identify these boundary contributions with the maximal entropy of gravitational degrees of freedom associated with the diamond.