论文标题
对设备行为指纹的调查:数据源,技术,应用程序方案和数据集
A Survey on Device Behavior Fingerprinting: Data Sources, Techniques, Application Scenarios, and Datasets
论文作者
论文摘要
在当前基于网络的计算世界中,互连设备的数量呈指数增长,其多样性,故障和网络安全威胁的速度也以相同的速度增加。为了确保新颖环境的正确功能和性能,例如智能城市,行业4.0或人群,至关重要的是要识别其设备(例如传感器,执行器)的能力,并检测由于网络攻击,系统故障或错误发现而可能引起的潜在不当行为。考虑到这个目标,一个有希望的研究领域的出现了,专注于创建和管理指纹,以对设备动作及其组件的行为进行建模。手头文章研究了设备行为指纹领域的最新增长,从应用程序,行为来源以及处理和评估技术方面。首先,它对最新和代表性的研究工作使用的设备类型,行为数据以及处理和评估技术进行了全面审查,该研究涉及两种主要情况:设备识别和设备不当行为检测。之后,对每项工作进行了深入的分析和比较,强调其特征,优势和局限性。本文还为研究人员提供了对现有数据集最相关特征的回顾,因为大多数新颖的处理技术都是基于机器学习和深度学习的。最后,它研究了近年来这两种情况的演变,为指导该地区的新解决方案提供了经验教训,当前的趋势和未来的研究挑战。
In the current network-based computing world, where the number of interconnected devices grows exponentially, their diversity, malfunctions, and cybersecurity threats are increasing at the same rate. To guarantee the correct functioning and performance of novel environments such as Smart Cities, Industry 4.0, or crowdsensing, it is crucial to identify the capabilities of their devices (e.g., sensors, actuators) and detect potential misbehavior that may arise due to cyberattacks, system faults, or misconfigurations. With this goal in mind, a promising research field emerged focusing on creating and managing fingerprints that model the behavior of both the device actions and its components. The article at hand studies the recent growth of the device behavior fingerprinting field in terms of application scenarios, behavioral sources, and processing and evaluation techniques. First, it performs a comprehensive review of the device types, behavioral data, and processing and evaluation techniques used by the most recent and representative research works dealing with two major scenarios: device identification and device misbehavior detection. After that, each work is deeply analyzed and compared, emphasizing its characteristics, advantages, and limitations. This article also provides researchers with a review of the most relevant characteristics of existing datasets as most of the novel processing techniques are based on machine learning and deep learning. Finally, it studies the evolution of these two scenarios in recent years, providing lessons learned, current trends, and future research challenges to guide new solutions in the area.