论文标题

卷积复杂知识图嵌入

Convolutional Complex Knowledge Graph Embeddings

论文作者

Demir, Caglar, Ngomo, Axel-Cyrille Ngonga

论文摘要

在本文中,我们研究了学习知识图的连续矢量表示的问题,以预测缺失的链接。我们提出了一种名为Conex的新方法,该方法通过利用与复杂值嵌入载体的Hermitian内部产物的组成来散布缺少链接。我们根据WN18RR,FB15K-237,亲属关系和UMLS基准数据集对CONEX进行评估。我们的实验结果表明,CONEX在所有数据集上的链接预测任务上的旋转,贵族和塔克等最先进的方法的表现优于最先进的性能,同时需要少8倍的参数。我们通过提供开源实现,包括培训,评估脚本以及https://github.com/conex-kge/conex的预培训模型,确保结果的可重复性。

In this paper, we study the problem of learning continuous vector representations of knowledge graphs for predicting missing links. We present a new approach called ConEx, which infers missing links by leveraging the composition of a 2D convolution with a Hermitian inner product of complex-valued embedding vectors. We evaluate ConEx against state-of-the-art approaches on the WN18RR, FB15K-237, KINSHIP and UMLS benchmark datasets. Our experimental results show that ConEx achieves a performance superior to that of state-of-the-art approaches such as RotatE, QuatE and TuckER on the link prediction task on all datasets while requiring at least 8 times fewer parameters. We ensure the reproducibility of our results by providing an open-source implementation which includes the training, evaluation scripts along with pre-trained models at https://github.com/conex-kge/ConEx.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源