论文标题

从变化两电子降低密度基质理论的周期性分子系统中相关驱动的现象

Correlation-Driven Phenomena in Periodic Molecular Systems from Variational Two-electron Reduced Density Matrix Theory

论文作者

Ewing, Simon, Mazziotti, David A.

论文摘要

分子周期系统中相关驱动的现象在计算上​​的预测不仅是挑战性的,这不仅是因为这种系统定期无限,而且还因为它们通常密切相关。在这里,我们概括了变异的两电子降低密度矩阵(2-RDM)理论,以计算密切相关的周期系统的能量和特性。单位单元格的2-RDM直接计算为必要的$ n $表述条件,以使单位电池2-RDM至少代表一个$ n $ electron密度矩阵。两种规范但非平凡的系统,周期性的金属氢链和周期性齿轮,以证明该方法。我们表明,尽管单参照相关理论并未捕获这两个分子系统中的强(静态)相关效应,但周期性变化2-RDM理论可以预测氢链中的Mott Metal-Metal-Metal-Metal-ussulator跃迁和acenes中的长度依赖性的政治形成。对于氢链和牙齿,将周期性计算与以前的非周期性计算进行了比较,结果表明能量发生了显着变化,并且从周期性边界条件中进行了电子相关性的增加。 2-RDM理论允许比传统上可能更大的活动空间,它适用于研究一般周期性分子固体和材料中相关驱动的现象。

Correlation-driven phenomena in molecular periodic systems are challenging to predict computationally not only because such systems are periodically infinite but also because they are typically strongly correlated. Here we generalize the variational two-electron reduced density matrix (2-RDM) theory to compute the energies and properties of strongly correlated periodic systems. The 2-RDM of the unit cell is directly computed subject to necessary $N$-representability conditions such that the unit-cell 2-RDM represents at least one $N$-electron density matrix. Two canonical but non-trivial systems, periodic metallic hydrogen chains and periodic acenes, are treated to demonstrate the methodology. We show that, while single-reference correlation theories do not capture the strong (static) correlation effects in either of these molecular systems, the periodic variational 2-RDM theory predicts the Mott metal-to-insulator transition in the hydrogen chains and the length-dependent polyradical formation in acenes. For both hydrogen chains and acenes the periodic calculations are compared with previous non-periodic calculations with the results showing a significant change in energies and increase in the electron correlation from the periodic boundary conditions. The 2-RDM theory, which allows for much larger active spaces than are traditionally possible, is applicable to studying correlation-driven phenomena in general periodic molecular solids and materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源