论文标题
促进{\ it Ab intib}使用现代神经网络模型和主动学习对多组件固体进行配置采样
Facilitating {\it ab initio} configurational sampling of multicomponent solids using an on-lattice neural network model and active learning
论文作者
论文摘要
我们提出了一种以非常规的方式,使用Beeller-Parinello型神经网络电位(NNP)在多组分结晶固体中进行{\ IT IT i i}的配置样本:NNP受过培训,可以预测从培训中培训的完美效果的放松结构的能量,而不是在训练中可以通过培训进行精美的培训。采用主动学习方案获得包含热力学相关性构型的训练集。这可以绕过结构放松程序,在将常规NNP方法应用于晶格配置问题时,这是必要的。该想法是在三种旋转氧化物中A/B站点反转度的温度依赖性的计算中证明了这一想法。本方案可以作为“困难”系统群集扩展的替代方案,例如,具有许多与当今许多技术应用相关的组件和sublattices的复杂体积或接口系统。
We propose a scheme for {\it ab initio} configurational sampling in multicomponent crystalline solids using Behler-Parinello type neural network potentials (NNPs) in an unconventional way: the NNPs are trained to predict the energies of relaxed structures from the perfect lattice with configurational disorder instead of the usual way of training to predict energies as functions of continuous atom coordinates. An active learning scheme is employed to obtain a training set containing configurations of thermodynamic relevance. This enables bypassing of the structural relaxation procedure which is necessary when applying conventional NNP approaches to the lattice configuration problem. The idea is demonstrated on the calculation of the temperature dependence of the degree of A/B site inversion in three spinel oxides, MgAl$_2$O$_4$, ZnAl$_2$O$_4$, and MgGa$_2$O$_4$. The present scheme may serve as an alternative to cluster expansion for `difficult' systems, e.g., complex bulk or interface systems with many components and sublattices that are relevant to many technological applications today.