论文标题

各向异性点配置的密度定理

Density theorems for anisotropic point configurations

论文作者

Kovač, Vjekoslav

论文摘要

现有文献的几个结果建立了以下强类型的欧几里得密度定理。这些结果声称,适当尺寸的欧几里得空间中的每组正上班密度都包含有限点配置的规定家族的所有足够大元素的等距副本。到目前为止,这种类型的所有结果讨论了固定点配置的线性各向同性扩张。在本文中,我们启动研究由各向异性扩张产生的点构型家族的类似密度定理的研究,即具有功率类型依赖性的家族对单个参数的依赖性。更具体地说,在这里,我们证明了由Bourgain在单纯形的顶点上对结果进行的非偶性功率概括,这是Lyall和Magyar在矩形盒的顶点上的结果,以及远距离树的结果,这是Lyall和Lyall和Magyar远距离图的特定情况。本文的另一个动机来源是提供了其他证据,证明了库克,玛格亚尔和普拉马尼克的作品的多功能性以及杜尔西克(Durcik)和本作者最近使用的修改。最后,本文的另一个目的是挑出与上述组合问题相关的各向异性多线性奇异积分运算符,因为它们本身很有趣。

Several results in the existing literature establish Euclidean density theorems of the following strong type. These results claim that every set of positive upper Banach density in the Euclidean space of an appropriate dimension contains isometric copies of all sufficiently large elements of a prescribed family of finite point configurations. So far, all results of this type discussed linear isotropic dilates of a fixed point configuration. In this paper we initiate the study of analogous density theorems for families of point configurations generated by anisotropic dilations, i.e., families with power-type dependence on a single parameter interpreted as their size. More specifically, here we prove nonisotropic power-type generalizations of a result by Bourgain on vertices of a simplex, a result by Lyall and Magyar on vertices of a rectangular box, and a result on distance trees, which is a particular case of the treatise of distance graphs by Lyall and Magyar. Another source of motivation for this paper is providing additional evidence for the versatility of the approach stemming from the work of Cook, Magyar, and Pramanik and its modification used recently by Durcik and the present author. Finally, yet another purpose of this paper is to single out anisotropic multilinear singular integral operators associated with the above combinatorial problems, as they are interesting on their own.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源