论文标题

使用经验定量数据建模生命线基础设施恢复

Modeling of Lifeline Infrastructure Restoration Using Empirical Quantitative Data

论文作者

Martell, Matthew, Miles, Scott, Choe, Youngjun

论文摘要

灾难恢复被广泛认为是灾难周期中最不知情的阶段。特别是,围绕生命线基础设施恢复建模的文献经常提到缺乏可用的经验定量数据。尽管有局限性,但越来越多的研究对建模生命线基础设施恢复,通常是使用经验定量数据开发的。这项研究回顾了这一文献,并确定了建模方法中存在的数据收集和使用模式,以使用经验定量数据为未来的努力提供信息。我们将建模方法分类为仿真,优化和统计建模。随着统计建模的最快增长,该领域的出版物数量随着时间的推移而增加。电力基础设施恢复最常建模,然后恢复多个基础设施,水基础设施和运输基础设施。在最近的文献中,越来越多地考虑了多个基础设施之间的相互依赖性。研究人员从各种来源收集数据,包括与公用事业公司,国家数据库以及事后损害和恢复报告的合作。这项研究提供了围绕生命线恢复建模领域数据使用实践的讨论和建议。遵循建议将促进围绕恢复建模的实践社区的发展,并为未来的数据共享提供更多机会。

Disaster recovery is widely regarded as the least understood phase of the disaster cycle. In particular, the literature around lifeline infrastructure restoration modeling frequently mentions the lack of empirical quantitative data available. Despite limitations, there is a growing body of research on modeling lifeline infrastructure restoration, often developed using empirical quantitative data. This study reviews this body of literature and identifies the data collection and usage patterns present across modeling approaches to inform future efforts using empirical quantitative data. We classify the modeling approaches into simulation, optimization, and statistical modeling. The number of publications in this domain has increased over time with the most rapid growth of statistical modeling. Electricity infrastructure restoration is most frequently modeled, followed by the restoration of multiple infrastructures, water infrastructure, and transportation infrastructure. Interdependency between multiple infrastructures is increasingly considered in recent literature. Researchers gather the data from a variety of sources, including collaborations with utility companies, national databases, and post-event damage and restoration reports. This study provides discussion and recommendations around data usage practices within the lifeline restoration modeling field. Following the recommendations would facilitate the development of a community of practice around restoration modeling and provide greater opportunities for future data sharing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源