论文标题

BESOV空间中广义的Camassa-Holm方程的不均匀连续性

Non-uniform continuity of the generalized Camassa-Holm equation in Besov spaces

论文作者

Li, Jinlu, Wu, Xing, Zhu, Weipeng, Guo, Jiayu

论文摘要

在本文中,我们考虑了Hakkaev和Kirchev(2005)\ Cite {Hakkaev 2005}提出的广义Camassa-Holm方程的Cauchy问题。我们证明,在BESOV空间的初始数据上,广义Camassa-Holm方程的解决方案图并不均匀。我们的结果包括目前的工作(2020)\ cite {li 2020,li 2020-1}在Camassa-Holm方程式上,$ Q = 1 $,并扩展了Sobolev Space的先前的不均匀连续性(2015)\ Cite {Mi 2015}到Besov Space。此外,关键空间中的非均匀连续性$ b_ {2,1}^{\ frac {3} {2}}}}}(\ Mathbb {r})$是我们论文中的第一个考虑。

In this paper, we consider the Cauchy problem for the generalized Camassa-Holm equation proposed by Hakkaev and Kirchev (2005) \cite{Hakkaev 2005}. We prove that the solution map of the generalized Camassa-Holm equation is not uniformly continuous on the initial data in Besov spaces. Our result include the present work (2020) \cite{Li 2020,Li 2020-1} on Camassa-Holm equation with $Q=1$ and extends the previous non-uniform continuity in Sobolev spaces (2015) \cite{Mi 2015} to Besov spaces. In addition, the non-uniform continuity in critical space $B_{2, 1}^{\frac{3}{2}}(\mathbb{R})$ is the first to be considered in our paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源